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Related URLs
� Personal homepage: papers, talks, etc.

http://www.math.odu.edu/~keyes

� SciDAC initiative
http://www.science.doe.gov/scidac

� TOPS software project
http://www.math.odu.edu/~keyes/scidac

� PETSc software project
http://www.mcs.anl.gov/petsc

� Hypre software project
http://www.llnl.gov/CASC/hypre

Slides from 14-hour Peking 
University CS&E short 
course with Bill Gropp now 
on-line
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Context of this presentation
� Directly related to presentations on:

� PETSc (today)
� Hypre (today)
� TAO (today)
� SuperLU (Wednesday)
� SUNDIALS (Friday)

� Closely related to other SciDAC talks:
� TSTT (Friday)
� APDEC/Chombo (Friday)
� CCA (Friday)
� PERC/TAU (Friday)
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Context of this presentation, cont.
� Unlike most of these related talks, this one is 

not a tutorial presentation on a presently 
click-downloadable library toolkit

� It motivates and describes an integration-in-
progress of several of these earlier developed 
and independently successful toolkits

� Implication: I get to philosophize about the 
solver software of the near future, to plan 
the rendezvous with apps scientists (you)
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Amalgam of two talks
� Part I: methods for implicit nonlinear solvers for 

coupled PDEs, as an example of the need for
polyalgorithmic, polymorphic toolkits such as
PETSc and Hypre

� Algorithmic background: fundamental iterative 
algorithms of Krylov, and Newton-Krylov (NK) –
building blocks for parallel implicit PDE software

� Focus: application- and operator-oriented extensions
to the NK framework

� Part II: balanced overview of TOPS, including 
other functionality (linear solvers, eigensolvers, 
etc.)
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Primary reference for Part I
� “Jacobian-Free Newton-Krylov Methods: 

Approaches and Applications” 
� Above-titled article with Dana Knoll of LANL will 

appear in the Journal of Computational Physics
� Review of Newton-Krylov algorithms
� Applications to problems in:

� aerodynamics
� plasma physics
� combustion
� radiation transport
� geophysics

� Discussion of some “tricks of the trade”
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Target application properties
� Multirate

� requiring fully or semi-
implicit in time solvers

� Multiscale
� requiring finest mesh spacing 

much smaller than domain 
diameter

� Multicomponent
� requiring physics-informed 

preconditioners, transfer 
operators, and smoothers

PEP-II cavity model, c/o Advanced Computing 
for 21st Century Accelerator Science & 

Technology SciDAC group

� Not linear
� Not selfadjoint
� Not structured

FUN3D Slotted Wing model,  c/o Anderson et al.
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Nonlinear solver philosophy
� The Newton-Krylov family of algorithms uses the Jacobian in two 

very different ways – to evaluate the linear residual and to 
precondition the linear residual

� In conventional Newton algorithms and nonlinear solver software,
these two functions are unnecessarily combined into a single sparse 
matrix data structure whose elements are explicitly stored

� Jacobian-free Newton-Krylov encourages the use of two different 
sources for the action of the Jacobian, one for each purpose

� an accurate Jacobian - for solution quality
� an approximate Jacobian - for flexibility and performance

� This has been built into the structure of PETSc from the beginning
of PETSc’s nonlinear functionality 

� This opens the door for use of physics-based preconditioning, while 
retaining asymptotic Newton convergence
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Algorithmic requirements
� After modeling and spatial discretization, we end 

up with large nonlinear algebraic system                        
(which could come from                           , after 
implicit temporal discretization, at each time step)

� For PDEs, the Jacobian matrix             is sparse
� Each equation comes from a local flux balance
� In unsteady case, timestep improves diagonal dominance

� For conservation law PDEs, there is a hierarchy of 
successively coarser approximate discretizations 
available (e.g., fusing control volumes)

� Discrete Green’s function is generally global, with 
decaying tail
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Recall Newton methods
� Given                                                           and 

iterate      we wish to pick          such that

where
� Neglecting higher-order terms, we get

where                                   is the Jacobian 
matrix, generally large, sparse, and ill-
conditioned for PDEs

� In practice, require
� In practice, set                                     where      is 

selected to minimize 
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Recall Krylov methods
� Given                                            and iterate    , we 

wish to generate a basis                                        for  
x (                ) and a set of coefficients              
such that       is a best fit in the sense that                 
minimizes 

� Krylov methods define a complementary basis 
so that        

may be solved for
� In practice                   and the bases are grown from 

seed vector                                   via recursive 
multiplication by       and conjugation or
orthogonalization
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Jacobian-free Newton-Krylov
� In the Jacobian-Free Newton-Krylov (JFNK) 

method, a Krylov method solves the linear Newton 
correction equation, requiring Jacobian-vector 
products

� These are approximated by the Fréchet derivatives

(where       is chosen with a fine balance between 
approximation and floating point rounding error) or 
automatic differentiation, so that the actual Jacobian 
elements are never explicitly needed

� One builds the Krylov space on a true F’(u)  (to 
within numerical approximation)
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Recall idea of preconditioning
� Krylov iteration is expensive in memory and in 

function evaluations, so k must be kept small in 
practice, through preconditioning the Jacobian with 
an approximate inverse, so that the product matrix 
has low condition number in

� Given the ability to apply the action of           to a 
vector, preconditioning can be done on either the 
left, as above, or the right, as in, e.g., for matrix-
free:
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Philosophy of Jacobian-free NK
� To evaluate the linear residual, we use the true F’(u) , 

giving a true Newton step and asymptotic quadratic 
Newton convergence

� To precondition the linear residual, we do anything 
convenient that uses understanding of the dominant 
physics/mathematics in the system and respects the 
limitations of the parallel computer architecture and the 
cost of various operations:

� combinations of operator-split Jacobians (for reasons of physics or 
reasons of numerics)

� Jacobian of related discretization (for “fast” solves)
� Jacobian of lower-order discretization (for more stability, less storage)
� Jacobian with “lagged” values for expensive terms (for less computation 

per degree of freedom)
� Jacobian stored in lower precision (for less memory traffic per 

preconditioning step)
� Jacobian blocks decomposed for parallelism
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Philosophy of Jacobian-free NK, cont.
� These motivations are not new; most large-scale 

application codes also take “short cuts” on the 
approximate Jacobian operator to be inverted – using 
physical intuition, asymptotics, etc.

� The problem with many codes is that they do not 
anywhere have an accurate global Jacobian operator; 
they use only the approximate Jacobian

� This leads to a weakly nonlinearly converging “defect 
correction method”

� Defect correction:

� in contrast to preconditioned Newton:
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Physics-based preconditioning
� In Newton iteration, one seeks to obtain a correction 

(“delta”) to solution, by inverting the Jacobian matrix 
on (the negative of) the nonlinear residual:

� A typical operator-split code also derives a “delta” to 
the solution, by some implicitly defined means, through 
a series of implicit and explicit substeps

� This implicitly defined mapping from residual to 
“delta” is a natural preconditioner; see JCP ref for 
shallow water equations and MHD system successes

� Software must accommodate this!
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Operator-split preconditioning
� Subcomponents of a PDE operator often have special 

structure that can be exploited if they are treated 
separately

� Algebraically, this is identical to Schwarz domain 
decomposition, by term instead of by subdomain 

� Suppose                                and a preconditioner is to 
be constructed, where                 and                   are each 
“easy” to invert

� Form a preconditioned vector from     as follows: 

� Equivalent to replacing      with
� First-order splitting error, yet often used as a solver!
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Operator-split preconditioning, cont.
� Suppose S is convection-diffusion and R is 

reaction, among a collection of fields stored as 
gridfunctions

� On a small regular 2D grid with a five-point 
stencil:

� R is trivially invertible in block diagonal form
� S is invertible with one multilevel solve per field

J = S + R
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� Preconditioners assembled from just the “strong” 
elements of the Jacobian, alternating the source term and 
the diffusion term operators, are competitive in 
convergence rates with full block-ILU on the Jacobian

� particularly, since the decoupled scalar diffusion systems are amenable to 
simple multigrid treatment – not as trivial for the coupled system

� The decoupled preconditioners store many fewer 
elements and significantly reduce memory bandwidth 
requirements and are expected to be much faster per 
iteration when carefully implemented

� See “alternative block factorization” by Bank et al. in 
JCP ref; incorporated into SciDAC TSI solver by
D’Azevedo

Operator-split preconditioning, cont.
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Using Jacobian of related discretization

� To precondition a variable coefficient 
operator, such as ∇·(α∇ •) , use          , 
based on a constant coefficient average

� Brown & Saad (1980) showed that, because 
of the availability of fast solvers, it may 
even be acceptable to use             to 
precondition something like

2∇α

y
v

x
u

∂
•∂+

∂
•∂+•∇− )()()(2

2∇−



Introduction  to TOPS 

Using Jacobian of lower order discretization
� Orszag popularized the use of linear finite element 

discretizations as preconditioners for high-order 
spectral element discretizations in the 1970s; both 
approach the same continuous operator 

� It is common in CFD to employ first-order upwinded
convective operators as approximate inversions for 
higher-order operators:

� better factorization stability
� smaller matrix bandwidth and complexity

� With Jacobian-free NK, we can have the best of both 
worlds – a stable factorization/cheap solve and a true 
Jacobian step
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Using Jacobian with lagged terms
� Newton-chord methods (e.g., papers by Smooke et al.) 

“freeze” the Jacobian matrices:
� saves Jacobian evaluation and factorization, which can be up to 90% of 

the running time of the code in some apps
� however, nonlinear convergence degrades to linear rate

� In Jacobian-free NK, we can “freeze” some or all of the 
terms in the Jacobian preconditioner, while always 
accessing the action of the true Jacobian for the Krylov 
matrix-vector multiply:

� still saves Jacobian work
� maintains asymptotically quadratic rate for nonlinear convergence

� See JCP ref for example with coupled edge plasma and
Navier-Stokes, showing five-fold improvement over full 
Newton with constantly refreshed Jacobian on LHS, 
versus JFNK with preconditioner refreshed once each ten
timesteps
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Using Jacobian with lower precision elements
� Memory bandwidth is the critical architectural 

parameter for sparse linear algebra computations
� Storing the preconditioner elements in single precision 

effectively doubles memory bandwidth (and 
potentially halves runtime) for this critical phase

� We still form the Jacobian-vector product with full 
precision and “zero-pad” the preconditioner elements 
back to full length in the arithmetic unit, so the 
numerical quality of the Krylov subspace does not 
degrade
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Parallel (Schwarz) preconditioning
� Given                     , partition       into 

subvectors, corresp. to subdomains       
of the domain of the PDE, 
nonempty, possibly overlapping, 
whose union is all of the elements of 
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Algorithm: Newton-Krylov-Schwarz

Newton
nonlinear solver

asymptotically quadratic

Krylov
accelerator

spectrally adaptive

Schwarz
preconditioner
parallelizable

Popularized in parallel Jacobian-free form under this name by 
Cai, Gropp, Keyes & Tidriri (1994)
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Part II:
Introducing “Terascale Optimal PDE 

Simulations” (TOPS) ISIC
Nine institutions, five years, 24 co-PIs
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� Enabling technologies groups to develop 
reusable software and partner with application 
groups

� In 2001 start-up, 51 projects share $57M/year
� Approximately one-third for applications
� A third for “integrated software infrastructure centers”
� A third for grid infrastructure and collaboratories

� Plus, two new 5 Tflop/s IBM SP machines 
available for SciDAC researchers
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SciDAC project characteristics

� Affirmation of importance of simulation
� for new scientific discovery, not just for “fitting” experiments

� Recognition that leading-edge simulation is 
interdisciplinary

� no support for physicists and chemists to write their own software 
infrastructure; must collaborate with math & CS experts

� Commitment to distributed hierarchical 
memory computers

� new code must target this architecture type

� Requirement of lab-university collaborations
� complementary strengths in simulation 
� 13 laboratories and 50 universities in first round of projects
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What’s new in SciDAC library software?
� Philosophy of library usage

� complex algorithms with lots of callbacks to user 
code (e.g., to physics routines by implicit solvers)

� extensibility
� polyalgorithms for adaptivity to applications and 

architecture

� Resources for development, 
maintenance, and support

� not just for “dissertation scope” ideas

� Experience on terascale scale computers
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Interacting with ISICs

Indicates “dependence on”

Applications

APDEC    TSTT       TOPS     SDM      PERC      CCA       SS
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Interacting with ISICs – one view

Indicates “dependence on”

Applications

PERC, CCA

TSTTAPDEC

TOPS

SS

SDM
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34 apps groups 
(BER, BES,FES, 
HENP)

7 ISIC groups 
(4 CS, 3 Math)

10 grid, data 
collaboratory 
groups 

adaptive 
gridding, 
discretization

solvers

systems 
software,
component 
architecture, 
performance 
engineering,
data 
management
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software 
integration
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Who we are…

… the PETSc and TAO people

… the hypre and PVODE people

… the SuperLU and PARPACK people

… as well as the builders of other widely used packages …
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Plus some university collaborators

Our DOE lab collaborations predate SciDAC by many years.

Demmel et al. Manteuffel et al. Dongarra et al.

Keyes et al.Ghattas et al.Widlund et al.
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You may know our “Templates”

www.siam.orgwww.netlib.org

… but what we are doing now goes “in between” and far beyond!
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Scope for TOPS
� Design and implementation of “solvers”

� Time integrators

� Nonlinear solvers

� Constrained optimizers

� Linear solvers

� Eigensolvers

� Software integration
� Performance optimization
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Optimizer

Linear 
solver

Eigensolver

Time 
integrator

Nonlinear 
solver

Indicates 
dependence

Sens. Analyzer

(w/ sens. anal.)

(w/ sens. anal.)
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Motivation for TOPS
� Not just algorithms, but vertically 

integrated software suites
� Portable, scalable, extensible, tunable 

implementations
� Motivated by representative apps, 

intended for many others
� Starring hypre and PETSc, among other 

existing packages
� Driven by three applications SciDAC 

groups
� LBNL-led “21st Century Accelerator” 

designs
� ORNL-led core collapse supernovae 

simulations
� PPPL-led magnetic fusion energy 

simulations

� Coordinated with other ISIC SciDAC 
groups

� Many DOE mission-critical systems are 
modeled by PDEs

� Finite-dimensional models for infinite-
dimensional PDEs must be large for 
accuracy

� “Qualitative insight” is not enough
� Simulations must resolve policy 

controversies, in some cases

� Algorithms are as important as 
hardware in supporting simulation

� Easily demonstrated for PDEs in the 
period 1945–2000 

� Continuous problems provide exploitable 
hierarchy of approximation models, 
creating hope for “optimal” algorithms

� Software lags both hardware and 
algorithms
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Keyword: “Optimal”
� Convergence rate nearly independent of 

discretization parameters
� Multilevel schemes for rapid linear convergence of 

linear problems
� Newton-like schemes for quadratic convergence of 

nonlinear problems

� Convergence rate as independent as    
possible of physical parameters

� Continuation schemes
� Physics-based preconditioning

unscalable

scalable

Problem Size (increasing with number of 
processors)
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Parallel multigrid c/o M. Adams, Berkeley-Sandia

The solver is a 
key part, but  
not the only 
part, of the 
simulation that 
needs to be 
scalable
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Why Optimal?
� The more powerful the computer, the greater the 

importance of optimality
� Example: 

� Suppose Alg1 solves a problem in time CN2, where N is the 
input size

� Suppose Alg2 solves the same problem in time CN
� Suppose that the machine on which Alg1 and Alg2 run has 

10,000 processors, on which they have been parallelized to run

� In constant time (compared to serial), Alg1 can run 
a problem 100X larger, whereas Alg2 can run a 
problem 10,000X larger
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Why Optimal?, cont.
� Alternatively, filling the machine’s memory, Alg1 requires 

100X time, whereas Alg2 runs in constant time
� Is 10,000 processors a reasonable expectation?

� Yes, we have it today (ASCI White)!

� Could computational scientists really use 10,000X?
� Of course; we are approximating the continuum
� A grid for weather prediction allows points every 1km versus every 

100km on the earth’s surface 
� In 2D 10,000X disappears fast; in 3D even faster

� However, these machines are expensive (Japan’s Earth 
Simulator is ~$500M, plus ongoing operating costs), and 
optimal algorithms are the only algorithms that we should 
afford to run on them
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Hypre’s AMG in SciDAC app
� PETSc-based PPPL code M3D has been retrofit with Hypre’s parallel 

algebraic MG solver of Ruge-Stueben type
� Iteration count results below are averaged over 19 different PETSc 

SLESSolve calls in initialization and one timestep loop for this operator split 
unsteady code, abcissa is number of procs in scaled problem; problem size 
ranges from 12K to 303K unknowns (approx 4K per processor)
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Hypre’s AMG in SciDAC app, cont.
� Scaled speedup timing results below are summed over 19 different PETSc 

SLESSolve calls in initialization and one timestep loop for this operator split 
unsteady code

� Majority of AMG cost is coarse-grid formation (preprocessing) which does not 
scale as well as the inner loop V-cycle phase; in production, these coarse 
hierarchies will be saved for reuse (same linear systems are called in each timestep
loop), making AMG much less expensive and more scalable
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Fusion Energy Sciences (FES)
SciDAC: Extended MHD

Center for Extended
Magnetohydrodynamic Modeling
This research project will develop computer codes that will 
enable a realistic assessment of the mechanisms leading to 
disruptive and other stability limits in the present and next 
generation of fusion devices. With an improvement in the 
efficiency of codes and with the extension of the leading 3D 
nonlinear magneto-fluid models of hot, magnetized fusion 
plasmas, this research will pioneer new plasma simulations 
of unprecedented realism and resolution. These simulations 
will provide new insights into low frequency, long-
wavelength non-linear dynamics in hot magnetized 
plasmas, some of the most critical and complex phenomena 
in plasma and fusion science. The underlying models will 
be validated through cross-code and experimental 
comparisons.
Steve Jardin
PPPL
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It’s 2002; do you know what your solver is up to?
Has your solver not been updated in the past five 

years?
Is your solver running at 1-10% of machine peak?
Do you spend more time in your solver than in your 

physics?
Is your discretization or model fidelity limited by the 

solver?
Is your time stepping limited by stability?
Are you running loops around your analysis code? 
Do you care how sensitive to parameters your results 

are?
If the answer to any of these questions is “yes”, you are a potential customer!
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What we believe
� Many of us came to work on solvers through 

interests in applications
� What we believe about …

� applications
� users
� solvers
� legacy codes
� software

… will impact how comfortable you are 
collaborating with us
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What we believe about apps
� Solution of a system of 

PDEs is rarely a goal in 
itself 

� PDEs are ultimately solved to 
derive various outputs from 
specified inputs (e.g., drag vs 
wingshape)

� Scientific goal is characterization 
of a response surface or a design 
or control strategy

� Together with analysis, 
sensitivities and stability are 
often desired

⇒ Software tools for PDE 
solution should also 
support related follow-on 
desires

� No general purpose PDE 
solver can anticipate all 
needs

� Why we have national 
laboratories, not numerical 
libraries for PDEs today

� A PDE solver improves with user 
interaction

� Pace of algorithmic development 
is very rapid

⇒ Extensibility is important
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What we believe about users
� Solvers are used by people 

of varying numerical 
backgrounds

� Some expect MATLAB-like 
defaults

� Others want to control 
everything, e.g., even varying 
the type of smoother and 
number of smoothings on 
different levels of a multigrid 
algorithm

⇒ Multilayered software 
design is important

� Users’ demand for 
resolution is virtually 
insatiable

� Relieving resolution 
requirements with modeling 
(e.g., turbulence closures, 
homogenization) only defers 
the demand for resolution to 
the next level

� Validating such models 
requires high resolution

⇒ Processor scalability and 
algorithmic scalability 
(optimality) are critical 
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What we believe about legacy code
� Porting to a scalable 

framework does not mean 
starting from scratch

� High-value meshing and 
physics routines in original 
languages can be 
substantially preserved

� Partitioning, reordering and 
mapping onto distributed 
data structures (that we may 
provide) adds code but little 
runtime

⇒ Distributions should 
include code samples 
exemplifying “separation 
of concerns”

� Legacy solvers may be 
limiting resolution, 
accuracy, and generality of 
modeling overall

� Replacing the solver may 
“solve” several other issues

� However, pieces of the legacy 
solver may have value as part 
of a preconditioner

⇒ Solver toolkits should 
include “shells” for 
callbacks to high value 
legacy routines
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What we believe about solvers
� Solvers are employed as 

part of a larger code
� Solver library is not only library 

to be linked
� Solvers may be called in 

multiple, nested places
� Solvers typically make callbacks
� Solvers should be swappable

⇒ Solver threads must not 
interfere with other 
component threads, 
including other active 
instances of themselves

� Solvers are employed in 
many ways over the life 
cycle of an applications 
code

� During development and 
upgrading, robustness (of the 
solver) and verbose diagnostics 
are important

� During production, solvers are 
streamlined for performance  

⇒ Tunability is important
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What we believe about software
� A continuous operator may 

appear in a discrete code in 
many different instances

� Optimal algorithms tend to be 
hierarchical and nested iterative

� Processor-scalable algorithms 
tend to be domain-decomposed 
and concurrent iterative

� Majority of progress towards 
desired highly resolved, high 
fidelity result occurs through 
cost-effective low resolution, low 
fidelity parallel efficient stages

⇒ Operator abstractions and 
recurrence are important

� Hardware changes many 
times over the life cycle of a 
software package

� Processors, memory, and 
networks evolve annually

� Machines are replaced every 
3-5 years at major DOE 
centers

� Codes persist for decades 

⇒ Portability is critical 
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Why is TOPS needed?
� What is wrong?
� Many widely used libraries are 

“behind the times” algorithmically 
� Logically innermost (solver) kernels 

are often the most computationally 
complex — should be designed 
from the inside out by experts and 
present the right “handles” to users

� Today’s components do not “talk 
to” each other very well

� Mixing and matching procedures 
too often requires mapping data 
between different storage 
structures (taxes memory and 
memory bandwidth)

� What exists already?
� Adaptive time integrators for stiff 

systems: variable-step BDF 
methods

� Nonlinear implicit solvers: 
Newton-like methods, FAS 
multilevel methods

� Optimizers (with constraints): 
quasi-Newton RSQP methods

� Linear solvers: subspace 
projection methods (multigrid, 
Schwarz, classical smoothers), 
Krylov methods (CG, GMRES), 
sparse direct methods

� Eigensolvers: matrix reduction 
techniques followed by tridiagonal 
eigensolvers, Arnoldi solvers
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Nonlinear Solvers
� What’s ready in TOPS now?
� KINSOL (LLNL) and PETSc (ANL)
� Preconditioned Newton-Krylov (NK) 

methods with MPI-based objects
� Asymptotically nearly quadratically 

convergent and mesh independent
� Matrix-free implementations (FD 

and AD access to Jacobian elements)
� Thousands of direct downloads 

(PETSc) and active worldwide 
“friendly user” base

� Interfaced with hypre
preconditioners (KINSOL)

� Sensitivity analysis extensions 
(KINSOL)

� 1999 Bell Prize for unstructured 
implicit CFD computation at 0.227 
Tflop/s on a legacy F77 NASA code

� What’s next?
� Semi-automated continuation schemes 

(e.g., pseudo-transience)
� Additive-Schwarz Preconditioned Inexact 

Newton (ASPIN)
� Full Approximation Scheme (FAS) 

multigrid
� Polyalgorithmic combinations of ASPIN, 

FAS, and NK-MG, together with new 
linear solvers/preconditioners

� Automated Jacobian calculations with 
parallel colorings

� New grid transfer and nonlinear coarse 
grid operators

� Guidance of trade-offs for 
cheap/expensive residual function calls

� Further forward and adjoint sensitivities
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Optimizers
� What’s ready in TOPS now?
� TAO (ANL) and VELTISTO (CMU)
� Bound-constrained and equality-

constrained optimization
� Achieve optimum in number of PDE 

solves independent of number of 
control variables

� TAO released 2000, VELTISTO 2001
� Both built on top of PETSc
� Applied to problems with thousands of 

controls and millions of constraints on 
hundreds of processors

� Used for design, control, parameter 
identification

� Used in nonlinear elasticity, Navier-
Stokes, acoustics

� State-of-art Lagrange-Newton-Krylov-
Schur algorithmics

� What’s next?
� Extensions to inequality constraints 

(beyond simple bound constraints)
� Extensions to time-dependent 

PDEs, especially for inverse 
problems

� Multilevel globalization strategies
� Toleration strategies for 

approximate Jacobians and 
Hessians

� “Hardening” of promising control 
strategies to deal with negative 
curvature of Hessian

� Pipelining of PDE solutions into 
sensitivity analysis



Introduction  to TOPS 

Linear Solvers
� What’s ready in TOPS now?
� PETSc (ANL), hypre (LLNL), 

SuperLU (UCB), Oblio (ODU)
� Krylov, multilevel, sparse direct
� Numerous preconditioners, incl. 

BNN, SPAI, PILU/PICC
� Mesh-independent convergence for 

ever expanding set of problems
� hypre used in several ASCI codes 

and milestones to date
� SuperLU in ScaLAPACK/PETSc
� State-of-art algebraic multigrid 

(hypre) and supernodal (SuperLU) 
efforts

� Algorithmic replacements alone yield 
up to two orders of magnitude in 
DOE apps, before parallelization

� What’s next?
� Hooks for physics-based operator-

split preconditionings
� AMGe, focusing on incorporation of 

neighbor information and strong 
cross-variable coupling

� Spectral AMGe for problems with 
geometrically oscillatory but 
algebraically smooth components

� FOSLS-AMGe for saddle-point 
problems

� Hierarchical basis ILU
� Incomplete factorization adaptations 

of SuperLU
� Convergence-enhancing orders for 

ILU
� Stability-enhancing orderings for 

sparse direct methods for indefinite 
problems
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Eigensolvers
� What’s ready in TOPS now?
� LAPACK and ScaLAPACK 

symmetric eigensolvers (UCB, 
UTenn, LBNL)

� PARPACK for sparse and 
nonsymmetric problems

� Reductions to symmetric 
tridiagonal or Hessenberg form, 
followed by new “Holy Grail” 
algorithm

� Holy Grail optimal (!): O(kn)
work for k n-dimensional 
eigenvectors

� What’s next?
� Direct and iterative linear 

solution methods for shift-
invert Lanczos for selected 
eigenpairs in large symmetric 
eigenproblems

� Jacobi-Davidson projection 
methods for selected eigenpairs

� Multilevel methods for 
eigenproblems arising from 
PDE applications

� Hybrid multilevel/Jacobi-
Davidson methods
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Abstract Gantt Chart for TOPS

Algorithmic Development

Research Implementations

Hardened Codes

Applications Integration

Dissemination

time

e.g.,PETSc

e.g.,TOPSLib

e.g., ASPIN

Each color module represents an algorithmic research idea on its way to becoming part of a supported 
community software tool. At any moment (vertical time slice), TOPS has work underway at multiple levels.  
While some codes are in applications already, they are being improved in functionality and performance as 
part of the TOPS research agenda.  
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Nonlinear Schwarz preconditioning
� Nonlinear Schwarz has Newton both inside and 

outside and is fundamentally Jacobian-free
� It replaces                with a new nonlinear system 

possessing the same root, 
� Define a correction            to the     partition (e.g., 

subdomain) of the solution vector by solving the 
following local nonlinear system:

where                  is nonzero only in the 
components of the     partition

� Then sum the corrections: 
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Nonlinear Schwarz, cont.
� It is simple to prove that if the Jacobian of  F(u) is 

nonsingular in a neighborhood of the desired root 
then                   and                have the same unique 
root

� To lead to a Jacobian-free Newton-Krylov algorithm 
we need to be able to evaluate for any                :

� the residual 
� the Jacobian-vector product

� Remarkably, (Cai-Keyes, SISC 2002) it can be shown 
that 

where                   and 
� All required actions are available in terms of            !
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Experimental example of nonlinear Schwarz

Newton’s method Additive Schwarz Preconditioned Inexact 
Newton (ASPIN)

Difficulty at 
critical Re

Stagnation 
beyond 

critical Re

Convergence 
for all Re



Introduction  to TOPS 

Goals/Success Metrics

� Understand range of algorithmic options and their tradeoffs 
(e.g., memory versus time)

� Can try all reasonable options easily without recoding or 
extensive recompilation

� Know how their solvers are performing
� Spend more time in their physics than in their solvers
� Are intelligently driving solver research, and publishing 

joint papers with TOPS researchers
� Can simulate truly new physics, as solver limits are steadily 

pushed back

TOPS users —
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Expectations TOPS has of Users
� Be willing to experiment with novel algorithmic choices –

optimality is rarely achieved beyond model problems 
without interplay between physics and algorithmics!

� Adopt flexible, extensible programming styles in which 
algorithmic and data structures are not hardwired

� Be willing to let us play with the real code you care about, 
but be willing, as well to abstract out relevant compact tests

� Be willing to make concrete requests, to understand that 
requests must be prioritized, and to work with us in 
addressing the high priority requests

� If possible, profile, profile, profile before seeking help
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http://www.math.odu.edu/~keyes/scidac
dkeyes@odu.edu

TOPS may be for you!

For more information ...


